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Alterations in Nerve and Muscle
Compound Action Potentials After
Acute Acrylamide Administration

Rebecca J. Anderson*

The early deficits of neurotoxicity induced by acrylamide were examined in rats by comparing
nerve and rauscle action potentials before and 24 hr after exposure to acrylamide (25, 50 or 100
mg/kg). No changes were seen in the nerve action potential amplitude or duration. The 25 mg/kg
dose produced a more variable nerve conduction velocity. There was also a significant broadening
of the muscle compound action potential. Neither of these effects were seen in the fasted
controls, However, the lengthening of the relative refractory period of the muscle action
potential was highly correlated with losses in body weight in the treatment groups and was
identical to changes seen in control animals which were fasted for 24 hr. The slowed conduction
of the muscle action potential may be a precursor of the nerve terminal damage which results
from chronic exposure. Changes in the muscle refractory period, on the other hand, appear to be
secondary to the loss in body weight which accompanies acrylamide administration.

Introduction

Chronic exposure to acrylamide results in pro-
gressive signs of neurotoxicity which have been
deseribed in both morphologic (1) and behavioral
terms (2). The effects on various components of
peripheral nerves have been the most extensively
studied aspects of acrylamide toxicity. There is a
selective loss of the distal portions of both motor (3)
and sensory nerves {4, 5), with the large diameter
fibers affected before smaller axons (6).

Clinically, acrylamide toxicity is characterized hy
paresthesia (1) and muscle weakness (2). Although
these effects are related to the neuropathy, it is
important to note that behavioral deficits have been
reported prior to the appearance of histologic nerve
damage. Some behavioral changes occur as a result
of an effect on membrane excitability. However,
the electrophysiologic characteristics of peripheral
nerve and skeletal muscle are attenuated by
acrylamide only after long periods of chronic dos-
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ing, an effect which correlates more clogely with
the destruction of nerve axons (7—9) than with
behavioral deficits.

Unfortunately, the effects of acrylamide on elee-
trophysiologic parameters have usually been exam-
ined using indirect, noninvasive techniques. Inac-
curacy in these measurements probably masked
any subtle effects of the drug on axonal and muscle
exeitability. With more accurate techniques it might
be possible to demonstrate that the muscle weak-
ness and paresthesia following acrylamide adminis-
tration are linked to a loss of electrophysiologic
responsiveness in the nerve and/or muscle, and that
both effects precede the histologic damage which
occurs only after long-term administration of acryl-
amide.

The purpose of this study was to examine whether
changes could be detected in the electrophysiologic
activity of peripheral nerve and musele using direct
measurements after relatively short-term exposure
to acrylamide.

Methods

To reduce the variability in measurements, each
animal in these experiments served as its own
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control. The control parameters of nerve and mus-
cle activity were recorded from the left hindlimb.
One week later the animal was dosed with acrylamide.
Twenty-four hours after acrylamide administra-
tion, another set of parameters was recorded from
the contralateral hindlimb.

Male Sprague-Dawley rats (190-240} were anes-
thetized with 50 mg/kg pentobarbital, adminstered
intraperitoneally. The left hindiimb was dissected
to expose the sciatic nerve and triceps surae
muscles. Pairs of platinum-iridium stimulating and
recording electrodes were placed on the sciatic
nerve for obtaining control measurements from the
nerve. The muscie electrophysiologic activity was
also recorded differentially. Following the data
collection the hindlimb was sutured and the animal
was allowed to recover from anesthesia, Care was
taken not to sever or damage any of the major
hindlimb innervation during these procedures and
cursory observation of the animal after recovery
from anesthesia revealed no detectable deficit in
locomotion as a result of these procedures. One
week was allowed for the animal to recover from
the effects of the surgery.

Groups of five animals from which control mea-
surements had been taken were then dosed with
either 25, 50 or 100 mg/kg of acrylamide or 1 ml
saline intraperitoneally. At 24 hr after administra-
tion, each animal was again anesthetized with 50
mg'kg pentobarbital and the right hindlimb was
dissected. The right sciatic nerve and triceps surae
muscles were recorded in a similar manner to the
left.

Following this set of electrophysiologic record-
ings, the sciatic nerves from both limbs were fixed
in sitw in 10% formalin for histologic examination.
After staining with hemotoxylin-eosin the nerves
were cut in both longitudinal and cross section and
mounted. The coded slides were evaluated by an
unbiased morphologist for evidence of structural
abnormalities.

Based on pilot studies, the acrylamide treated
animals were expected to lose a significant amount
of weight. In order to account for effects which
might be caused by a nonspeeific and acute weight
loss, contrel animals were fasted for 24 hr before
recording from the contralateral hindlimb.

The procedure for recording the electrophysio-
logie parameters before and after acrylamide has
been described previously (10). Supramaximal rec-
tangular pulses (0.02 msec duration) were applied
to the sciatic nerve at 15- sec intervals. The
nerve and muscle action potentials were recorded
from 100 consecutive stimuli. Each response was
converted to its digital equivalent, analyzed and
stored by our microprocessor system. The muscle
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action potential latency was measured as the time
in milliseconds from the stimuius artifact to the
onset of muscle depolarization. The nerve condue-
tion velocity was caleulated from the length of
nerve between the stimulating and recording elee-
trodes and the conduction time. For both the nerve
and musele action potentials, duration was mea-
sured from onset of depolarization to return to the
baseline; peak amplitude was caleulated in milli-
volts.

Twin pulse stimuli were used to determine the
refractory period of the muscle action potential. As
the stimulus interval was varied between 3.5 and 20
msec, the two muscle action potentials were recorded
and analyzed. The relative refractory period was
taken as an exponential function (11) of the second
action potential relative to the first. From these
functions, the time at which the second potential
reached 75% of its maximal amplitude was calcu-
lated and was taken as a standardized measure of
refractoriness for comparison between treated and
control groups.

Changes in each parameter of the action poten-
tials between the left and right hindlimb were
analyzed as a function of dose by analysis of
covariance. In addition, the refractory period mea-
surements were analyzed by the sign test. Changes
which differed at p < 0.05 were judged to be
statistically significant.

Results

The effects of acrylamide on the nerve and
muscle action potentials are summarized in Table 1.
The only significant change in nerve activity was an
increased variability in conduction velocity after 25
mg/kg. The other characteristics of the wave form at
this dose and all characteristics at the 50 and 100
mg/kg does were unaffected by acrylamide.

Alterations in the musele action potential after
acrylamide administration can be seen qualitatively
as a change in the shape of the wave form. One such
example is shown in Figure 1. Although there was
no significant change in the conduction velocity
which was ecalculated from the onset of the action
potential depolarization, there was a marked broad-
ening of the wave form. This was confirmed statisti-
caily as an increase in the duration of the musc'e
action potential as indicated in Table 1 and was seen
after all three doses of acrylamide.

Acrylamide also induced a prolongation and
increased variability of the relative refractory period
of the muscle action potential. The stimulus inter-
val required for 75% recovery of the action poten-
tial in each treatment group is compared in Table 2.
With the contralateral untreated side being used as
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Table 1. Effects of acrylamide and fasting on nerve and muscle electrophysiologic activity.

Acrylamide
Control, unfasted  Control, fasted 25 mg/kg 50 mgkg 100 mg'kg
Nerve action potential
Conduetion velocity, m/sec 317 14 3568 =32 79.0 + 24.9° 38.0 3.2 34.0 =35
Duration, msec 1.05 = 0.09 0.83 = 0.03 1.02 £ 0.13 0.94 = 0.29 0.85 = 0.35
Amplitude, mV 0.49 = 0.07 0.99 = 3,11 0.42 = 0.15 0.72 = 0,10 0,92 = 0.10
Muscle action potential
Latency, msec 1.87 = 0.06 2.06 = 0.21 181 = 0.1 1.79 = (.22 1.76 = (.23
Duration, msee 1.96 = 0.13 1.98 + 0.11 2.58 = 0.33" 2.42 + 0.25° 2.48 + 0.26°
Amplitude, mV 0.58 = 0.05 0.68 = 0.20 0.51 = 0.09 - 0.58 = 0.15 (.81 = 0.20

2n < 0.001, compared with unfasted control.
by < 0.005, compared with unfasted control.

T CONTROL
0.43 mV
1_
T ACRYLAMIDE
0.6 mV¥
.
E——
2 msec

Ficure 1. Effect of acrylamide on the muscle compound action
potential. Each panel shows the computer average of 100
censecutive action potentials: (top) control response of one
animal; (bottom) response from the contralateral limb of the
same animal 24 hr after exposure to 50 mg/kg acrylamide.

the control, acrylamide {100 mg/kg) significantly
increased the refractory period from 5.25 to 8.85
msee, Interestingly, control rats which were fasted
for 24 hr also showed a marked prolongation in the
relative refractory period which was indistinguish-

able from the rats receiving 100 mg/kg acrylamide.
Concurrently with this prolongation, the refractory
period was more variable among the treated ani-
mals than in the same animals prior to treatment.
Although the increased variability only reached
statistical significance for the fasted animals and
the 100 mg/kg acrylamide-treated animals, the
standard errors are clearly larger in all treated
groups, compared to the unfasted controls.

As we had seen previously in pilot studies,
acrylamide treatment resulted in a loss of body
weight. A significant loss of approximately 19
grams was seen in the animals receiving 100 mg/kg
acrylamide and in the control rats which were
fasted for 24 hr. This is shown in Figure 2. The loss
in body weight for all groups was correlated statis-
tically with the prolongation in the musecle action
potential relative refractory period {(correlation
coefficient » = 0.96).

There are several incidental observations which
should also be noted. The acrylamide treated ani-
mals, especially those receiving 50 or 100 mg/kg,
showed signs of behavioral toxicity after 24 hr of
exposure. Although these were not quantitated,
the animals appeared to be hyperreflexic, especially
to nonspecific somatosensory stimulation. They also
resisted being handled. Resting tremor was noted
in several animals receiving 100 mg/kg but locomo-

Table 2. Effect of acrylamide and fasting on the relative refractory period of the musele action potential.

75% Refractory period, msee

{mean + SEM) % of unfasted control Sign test?
Control, unfasted 5.256 = 0.51 100
Acrylamide
26 mg/kg 74 270 114 NS
50 mg'kg 64 *1.20 120 NS
100 mg/kg 8.85 = 2.79 184 a < 0.01
Control, fasted 8.82 + 2.87 200 a < 0.01

*Compared with unfasted control.
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Fisure 2. Effect of acrylamide on body weight. Each bar is the
mean + SEM of the weight lost or gained in each group
during the 24 hr treatment period, The cross-hatched bars
show the acrylamide-treated groups and the stippled bars
show the control groups. The control group on the right was
fasted for 24 hr. Asterisks (*) indicate p < 0.05 when
compared to the untreated control.

tion was not markedly altered in any of the treated
animals.

No sign of peripheral neuropathy was noted in
the light microscope slides of either hindlimb nerve
at any of the three acrylamide doses. In some cases,
however, there was evidence of increased vascular-
ization and an inflammatory response on the left
side, which was the first operated side. The sciatic
nerves from the right hindlimb, which were fixed
immediately following the electrophysiologic record-
ing, were normal.

Discussion

These results show that alterations in nerve and
musele function can be detected after only 24 hr
exposure to acrylamide. Although an accurate cor-
relation was not attempted between the eleetro-
physiologic effects and changes in the animals’
behavior, it was noted that the animals receiving 50
or 100 mg/kg also showed behavioral signs of
acrylamide intoxication (tremor, hyperreflexia, ete.).

It is important to note that the changes in the
muscle action potential were more pronounced than
in the nerve and suggests that the initial effects of
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acrylamide are on muscle function rather than
nerve. This would be consistent with the observa-
tions of Tilson and Cabe {2), who have reported that
hindlimb muscular weakness is the earliest sign of
aerylamide intoxication. It is interesting to note
that Leswing and Ribelin {8) reported a selective
prolongation of econduction distally through nerve
terminals and musecles of cats and monkeys after
acrylamide administration. Since the neuromuscu-
lar junetion is affected only after longer periods of
exposure to acrylamide (12), our observations along
with others suggest that the “dying back” of the
axons actually begins with a change in muscle. The
loss then proceeds to the motor nerve terminals
which are affected before motor axons (3).

Only one change was noted in the sciatic nerve,
an increased variability in the conduction velocity
after 256 mg/kg. This effect is difficult to interpret
since larger doses had no effect. It may be, howev-
er, that the low dose produced a transient excit-
atory response which is unrelated to the subse-
quent peripheral neuropathy. Several other neuro-
toxic agents have been shown to be biphasic in their
effects (13), producing an initial hyperexcitability
and then a more pronounced and prolonged depres-
sant effect. Only the latter, incidently, has heen
correlated with structural damage to the nervous
system (13).

It is important to note that both these changes—in
nerve and muscle—were demonstrated after only
24 hr exposure to acrylamide. The functional elec-
trophysiologic deficit appeared to correlate with
our uncontrolled observations of behavioral changes
in the high dosed animals. However, these fune-
tional deficits occurred prior to any structural
pathology in the nerve. Only one study, using
behavioral techniques (2), has shown motor dys-
function with an earlier onset (12 hr after exposure
to 200 mg/kg). However, no mention was made in
this case of weight loss, which would be expected to
be great, and one can guestion the eontribution of
generalized weakness to the result.

In our study, the above-mentioned changes are
significant because they did not occur in control
animals which had been fasted to lose comparable
weight over the same time period. This is con-
trasted by the effects on the musecle refractory
period in which there was an obvious correlation
with weight logs. This increased refractoriness of
the muscle may contribute to the gross weakness
observed in animals after short-term dosing but
does not preclude other factors {e.g. neuropathy)
from contributing to the motor dysfunction seen
after longer term exposure. In any case, the more
important effect is the slowed muscle eenduction
cansed by acrylamide.
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Others have achieved a separation of muscle
dysfunction and weight loss {(2), but only after very
low doses and at least one week of chronic expo-
sure. In view of this, the electrophysiologic changes
after 24 hr are all the more striking. One can
speculate that these early, subtle changes in the
muscle, and perhaps the nerve, are the first indica-
tion that a progressive distal-to-proximal neuroc-
muscular dysfunction has begun, and if allowed to
continue will result in structural damage.

The author wishes to thank Dr. J. J. Bernstein for assessing
the nerve morphology and Mr. John Parker and Mr. Victor
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